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The phase behavior and the orientational structure of polar model fluids confined to slit pores is investigated
by means of density functional theory in a modified mean-field approximation. We focus on fluid states and
further assume a uniform number density throughout the pore. Our results for spherical dipolar particles with
additional van der Waals–like interactions �Stockmayer fluids� reveal complex fluid-fluid phase behavior in-
volving condensation and first- and second-order isotropic-to-ferroelectric phase transitions, where the ferro-
electric ordering occurs parallel to the confining walls. The relative importance of these phase transitions
depends on two “tuning” parameters, that is the strength of the dipolar interactions �relative to the isotropic
attractive ones� between fluid particles, and on the pore width. In particular, in narrow pores the condensation
transition seen in bulk Stockmayer fluids is entirely suppressed. For dipolar hard spheres, on the other hand, the
impact of confinement consists in a decrease of the isotropic-to-ferroelectric transition temperatures. We also
demonstrate that the local orientational structure is inhomogeneous and anisotropic even in globally isotropic
systems, in agreement with computer simulation results.
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I. INTRODUCTION

Spatial confinement may have significant effects on the
phase behavior of a confined fluid compared to its bulk coun-
terpart �1�. Classical examples are the shift of the bulk gas-
liquid condensation towards lower pressures �capillary con-
densation�, the corresponding suppression of the vapor-liquid
critical point �2–4�, shifts of the freezing temperatures �5,6�,
or capillary nematization in liquid-crystal models �7–11�.
Furthermore, in a recent simulation study �12,13� of strongly
coupled dipolar fluids �spherical particles with permanent
point dipoles� we have shown that presence of confining
walls can even promote long-range parallel ordering of the
dipole moments.

In the present paper we are rather concerned with the
impact of confinement on moderately polar fluids such as
chloroform, where the molecules interact with each other
both by anisotropic dipolar and by dispersive �van der Waals�
interactions. A classical model for such systems is the so-
called Stockmayer fluid �14�, whose bulk behavior has been
intensely studied over the last decade. In particular, it has
turned out �15–17� that Stockmayer fluids with appropriate
ratios of dipolar and dispersive interactions can exhibit both
a vapor-liquid transition and a second fluid-fluid transition
yielding a ferroelectric phase with long-range order of the
dipole moments. The characteristics of these two fluid-fluid
phase transitions in the presence of two parallel confining
walls �slit-pore� are the central topic of our investigation. As
an example of a “dipole-dominated system” we also consider
a confined dipolar hard sphere �DHS� fluid, in which the
ordinary gas-liquid transition is absent �18,19�.

So far, confined fluids with dipolar interactions have been
much less investigated than systems interacting via short-

range �e.g., Lennard-Jones� potentials �20�. The most impor-
tant reason is the computational burden of handling systems
with long-range interactions and reduced spatial symmetry. It
is therefore not surprising that, prior to our own calculations
involving confined dipolar soft spheres �12,13�, most theo-
retical and simulation studies of confined dipolar model flu-
ids had focused on specific thermodynamic states �21–24�
and on systems in which the dipolar interactions are essen-
tially unimportant �25–27�.

In the present work we explore the phase behavior of
Stockmayer and DHS fluids using density functional theory
in the so-called modified mean-field �MMF� approximation
�28–30�. Within this method, the pair correlation function g
involved in the interaction part of the free energy is replaced
by the Boltzmann factor �contrary to simple mean-field
theory, where g is set to one�. The same ansatz has been
previously employed to study phase properties of bulk dipo-
lar fluids �31,32� and dipolar mixtures �33�, and the results
suggest that the theory does reproduce main features of the
phase behavior such as the appearance of spontaneous polar-
ization and the presence �absence� of ordinary condensation
transitions in pure Stockmayer �DHS� fluids. In order to fa-
cilitate investigation of the overall phase behavior we further
assume that the number density is uniform throughout the
pore. This is clearly an idealization in view of stratification,
that is the formation of the fluid molecules into layers �strata�
parallel to the confining walls. Experimental evidence for
this ordering phenomenon is given by the oscillatory force-
distance �solvation force� profiles occurring in a variety of
simple and complex confined fluids �34�, as well as by the
appearance of layering transitions, i.e., the stepwise expul-
sion of molecules from thin liquid films �35�. Stratification
has also be observed directly, that is, via oscillatory density
profiles, in computer simulations and theoretical studies �for
a recent review, see Ref. �20�� of fluids confined to slit-pore
geometries. On the other hand, stratification is usually re-*Electronic address: sabine.klapp@fluids.tu-berlin.de
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stricted to those regions in the fluid immediately exposed to
the walls �20�. Therefore, the assumption of a uniform den-
sity in our theoretical study seems reasonable at least for
mesoscopic pore width, and may serve as a useful starting
point even for investigations of nanoscopic pores with pore
widths of a few particle diameters.

The rest of the paper is organized as follows. In Sec. II we
formulate our model and derive the MMF expression for the
free energy functional, focusing on fluid phases with isotro-
pic or orientationally ordered character. The resulting func-
tional is a generalization of the corresponding expression for
bulk polar systems derived earlier �29,31,32�. Results for the
overall phase behavior and the local orientational structure
are presented in Secs. III A and III B, respectively. Finally,
our conclusions are summarized in Sec. IV.

II. THEORY

A. Model system

Our model fluid consists of spherical particles with diam-
eters � and embedded point dipole moment of strength � in
the center of the particles. In addition to the dipole-dipole
interaction a Lennard-Jones �LJ� interaction between the
spheres may be present as well. The resulting pair potential
between two particles with coordinates �1���r1 ,�1� and
�2�= �r2 ,�2� is given as

uFF�12� = �� , r12 � �̃T,

udip�r12,�1,�2� + uLJ�r12� , r12 � �̃T,

�2.1�

where r12=r1−r2 is the connecting vector, r12= �r12�, and
�i= �	i ,
i� represents the orientation of particle i in a spa-
tially fixed coordinate system. Furthermore,

udip�r12,�1,�2�

=
�2

r12
3 �̂��1� · �̂��2� − 3��̂��1� · r̂12���̂��2� · r̂12� ,

�2.2�

is the dipolar potential where �̂��� and r̂12 are unit vectors in
the direction of � and r12, respectively, and

uLJ�r12� = 4�FF�� �

r12
	12

− � �

r12
	6
 �2.3�

is the LJ potential involving the attraction parameter �FF.
Apart from the hard core in Eq. �2.1�, which we have intro-
duced for numerical convenience, the present model is a so-
called Stockmayer fluid �see, e.g., Ref. �15��. To mimic the
fact that, in the true Stockmayer fluid, the average particle
separation varies with the thermodynamic parameters con-
sidered, we choose a temperature-dependent hard core de-
fined via the Barker-Henderson �BH� formula �36�

�̃T = �
0

�

dr12 exp�− �uLJ�r12�� , �2.4�

where T is the temperature and �=1/kBT with kB being
Boltzmann’s constant. In addition to Stockmayer fluids, we
consider in the present work also dipolar fluids without any
dispersive interactions, i.e., �FF=uLJ�r12�=0. In this limit, BH
formula gives �̃T=�, and the pair potential �2.1� reduces to
that of dipolar hard spheres.

To model the confinement, we consider the dipolar fluid
described by Eq. �2.1� to be squeezed between two plane
parallel, smooth walls separated by a distance Lz along the z
axis of the coordinate system and of infinite extent in the x-
y plane. Specifically, we employ the fluid-wall potential

uFW�z� = �� , �z� � �Lz − �̃T�/2,

−
2

3
�FW�� �

Lz/2 + z
	3

+ � �

Lz/2 − z
	3
 , �z� � �Lz − �̃T�/2.  �2.5�

The functional form of uFW�z� is based on the assumption
that each wall consists of particles with which the fluid at-
oms interact via the LJ potential given in Eq. �2.3�. Averag-
ing then the LJ interactions over all possible positions of
wall atoms �i.e., the subspaces z�−Lz /2 and z�Lz /2� and
approximating �for numerical reasons� the averaged repul-
sive part of the LJ potential by a hard core at �z � = �Lz

− �̃T� /2, one obtains the fluid-wall potential given in Eq.
�2.5�. We note that, due to the effectively hard walls, the
space in directions normal to the walls is restricted to Lz
− �̃T �rather than to Lz�.

In the present calculations we set the fluid-wall attraction
parameter �FW equal to that characterizing the fluid-fluid in-

teractions, i.e., �FW=�FF. For �FF=0 we therefore consider
DHS between hard walls, whereas the Stockmayer fluid
��FF�0� is exposed to additional attractive fluid-wall inter-
actions.

B. Density functional theory

In order to analyze the phase behavior of our confined
polar fluid we employ density functional theory. The key
quantity of this approach is the grand canonical density func-
tional ����,
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���� = Fid��� + FFF���

+� dr1d�1�uFW�z1� − �chem���r1,�1� , �2.6�

where ��r1 ,�1� is the singlet density, Fid is the ideal-gas part
of the free energy, FFF is the �fluid-fluid-� interaction part,
and the last term in Eq. �2.6� includes the effect of the ex-
ternal �fluid-wall� potential �see Eq. �2.5�� and the chemical
potential �chem. Per definition, � becomes minimal for the
equilibrium configuration ��r ,�� corresponding to the set
��chem,T ,V� �where V=A�Lz− �̃T� is the volume defined by
the effective wall separation and the area A parallel to the
walls�. Thus, the singlet density fulfills the Euler-Lagrange
equation

��

���r,��
= 0. �2.7�

1. Singlet density

In this work we restrict ourselves to the treatment of flu-
idlike, but possibly orientationally ordered phases of the di-
polar model fluid in the slit pore. We are particularly inter-
ested in the occurrence of spontaneous polarization. In
principle, investigation of this situation requires us to take
into account the formation of domains with differently di-
rected polarization vectors. By forming domains, a real sys-
tem �of arbitrary shape� avoids the occurrence of depolariz-
ing fields ED arising in homogeneously polarized samples
from surface charges at their boundaries �see, e.g., Ref. �37��.
Explicit expressions for ED can be derived for general ellip-
soids �37�. Within density functional theory, domain forma-
tion could described by a singlet density ��r ,�� depending
on all three spatial coordinates, but using such an ansatz in
the actual minimization procedure is a quite challenging task
as demonstrated by recent work of Groh and Dietrich
�38,39�. For bulk systems, the same authors have shown �40�
that one can circumvent the problem by considering a priori
a needlelike volume �polarized along its long axis�, for
which ED=0 and a homogeneous polarization without do-
mains can be assumed �more precisely, it was shown that the
needlelike volume corresponds to the same free energy as a
volume of arbritrary shape subdivided into domains�. The
confined geometry considered in the present work can be
considered as an ellipsoid with vanishing aspect ratio. For
this geometry, ED vanishes �37� if the sample is polarized
along a direction in the plane spanned by the slab �contrary
to the situation of perpendicular polarization�. Therefore, the
confined fluid with in-plane polarization is comparable to the
bulk fluid in the needlelike volume with longitudinal polar-
ization and indeed, it can be shown that the corresponding
free energies can be mapped onto each other �31�. Focusing
on this type of polarization we can therefore safely neglect
domain formation �further evidence for the absence of do-
mains is given by our recent computer simulation results
�12,13��. Thus, the only possible spatial dependence of the
singlet density is that induced by the pure confinement and
concerns the z direction, that is,

��r,�� = ��z,�� = ���z,�� . �2.8�

In Eq. �2.8� ���� is the orientational distribution function,
which is normalized to 1, i.e.,

� d���z,�� = 1. �2.9�

For isotropic states, ����=1/ �4�. Deviations from that
constant value indicate the presence of orientational order. To
describe an ordering along a direction parallel to the walls
�i.e., within the xy plane�, we follow Ref. �31� �where oblate
bulk samples have been considered� and expand ��z ,�� in
terms of spherical harmonics Ylm��� �41�,

��z,�� = �
l=0

�

�
m=−l

l

�lm�z�Ylm��� , �2.10�

where the lowest-order coefficient must be a �real� constant
in order to fulfill the normalization condition �2.9�, i.e.,
�00�z�=�00=1/�4. The higher-order expansion coefficients
are, in general, complex quantities, as are the spherical har-
monics. Indeed, one has �41� Ylm

* ���=Ylm���, where Y* de-
notes the complex conjugate and m=−m. The requirement
that the orientational distribution must be real then imposes
the condition �lm�z�= �−1�m�lm

* �z�. Finally, the expansion co-
efficients �lm�z�, which may be interpreted as �local� orien-
tational order parameters, are related to the full distribution
via

�lm�z� =� d���z,��Ylm
* ��� . �2.11�

With the above definitions, the appearance of a polariza-

tion P̃�z�=��P�z�, where P�z�=�d���z ,���̂���, is indi-
cated by nonzero order parameters with l=1. Indeed, reex-
pressing the Cartesian components of �̂ in terms of spherical
harmonics and using the expansion �2.10� we find for the
Cartesian components of P�z�,

Px�z� =� d���z,��sin 	 cos 


= −�4

3

�2

2
� d���z,���Y11��� + Y11

* ����

= −�8

3
Re �11�z� �2.12�

and, similarly,

Py�z� =� d���z,��sin 	 sin 
 =�8

3
Im �11�z� ,

Pz�z� =� d���z,��cos 	 =�4

3
�10�z� . �2.13�

As argued at the beginning of this paragraph �see text

before Eq. �2.8��, the z component of P̃�z� should be zero in
any equilibrium configuration, and we will later see that this
is indeed the case �see Sec. III�. Nevertheless, to check the
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calculations we keep the coefficient �10�z� as a minimization
parameter. In deriving the right-most members of Eqs. �2.12�
and �2.13� we have used the orthogonality of the spherical
harmonics, �d�Ylm

* ���Yl�m����=�l,l��m,m�, and Re and Im
denote real and imaginary parts, respectively. Notice that the
Cartesian components of P�z� are not independent. Indeed,
due to the normalization of the distribution ��z ,�� �see Eq.
�2.9��, the magnitude of each component is less than or equal
to one, and the same holds for the sum of the squared aver-
ages, Px

2�z�+ Py
2�z�+ Pz

2�z��1 �equality holds for perfect
alignment of the dipoles�. Finally, nonzero order parameters
with l=2 indicate some type of ordering of the dipole axes. A
particularly interesting quantity, which can be nonzero al-
ready in isotropic �unpolarized� phases, is the order param-
eter �20�z� describing the axes’ orientation relative to the z
axis. In Sec. III B, we will present results for the related
�normalized� zz component of the local quadrupole tensor

Qzz�z� � � d���z,��
1

2
�3 cos2 	 − 1� =�4

5
�20�z� .

�2.14�

Qzz�z�=1 indicates perfect ordering of the dipole axes normal
to the walls �i.e., cos 	=0 for all dipoles�. On the other hand,
Qzz�z�=−1/2 if the dipoles point exclusively along directions
in the x-y plane �i.e., cos 	=1�.

The higher-order parameters �2±1�z� and �2±2�z� are re-
lated to the tensor components Qxx�z�, Qyy�z�, Qxy�z�, etc.,
and describe ordering of the dipole axes relative to other than
the z direction. We do not further discuss these quantities
since we are particularly interested in axes ordering in the
isotropic phase where, as we will see in Sec. III B, �20�z� is
the only nonvanishing order parameter.

2. Free energy in modified mean-field approximation

We now turn to the various free energy contributions ap-
pearing in the definition �2.6� of the grand canonical density
functional. Within the present ansatz for the singlet density
�see Eq. �2.8�� the ideal part is given by

Fid = VkBT��ln���3� − 1�

+ AkBT��
zmin

zmax

dz� d���z,��ln 4��z,�� ,

�2.15�

where � is the thermal wavelength, and we have introduced
the integration limits

zmin = −
Lz

2
+

�̃T

2
, zmax =

Lz

2
−

�̃T

2
. �2.16�

The second term in Eq. �2.15� accounts for the loss of en-
tropy in anisotropic configurations �it vanishes for ��z ,��
=1/4�.

According to our fluid model, the interaction free energy
subdivides into two contributions

FFF = FHS + �F , �2.17�

where FHS constitutes the contribution from the hard sphere
�HS� reference fluid �characterized by diameters �̃T, see Eq.
�2.4��. Due to our homogeneous ansatz �2.8� for the density,
FHS can be calculated from the Carnahan-Starling bulk ex-
pression �42�

FHS

V
= kBT�

4�T − 3�T
2

�1 − �T�2 , �2.18�

where �T= � /6���̃T
3 is the packing fraction.

The remaining �“excess”� term �F appearing in Eq.
�2.17� arises from the dipolar and the LJ interactions. Fol-
lowing previous density functional approaches for polar flu-
ids �29,31� we treat these contributions within the modified
mean-field �MMF� approximation where the pair distribution
function of the system is set to its low-density limit

g�r1,�1,r2,�2� = exp�− �uFF�r12,�1,�2�� . �2.19�

For the present model fluid �see Eq. �2.1��, the pair correla-
tion function is zero for separations r12��̃T. The MMF ap-
proximation then yields �28–30�

�F = −
�2

2�
�

r12��̃T

dr1dr2� d�1d�2

� ��z1,�1���z2,�2�f�r12,�1,�2� , �2.20�

where

f�r12,�1,�2� = exp�− �uFF�r12,�1,�2�� − 1

= exp�− �udip�r12,�1,�2� − �uLJ�r12�� − 1,

r12 � �̃T �2.21�

is the Mayer function. Due to the presence of the dipolar
interaction �udip� in the potential function uFF �see Eq. �2.1��,
the Mayer function of the present polar fluid is long-ranged
since it decays, to leading order, as −�udip�r12

−3. Following
Ref. �31� we therefore isolate the long-ranged �LR� term by
rewriting the Mayer function as f = fSR+ fLR, where

fLR�r12,�1,�2� = − �udip�r12,�1,�2� �2.22�

and

fSR�r12,�1,�2� = exp�− �udip�r12,�1,�2� − �uLJ�r12��

+ �udip�r12,�1,�2� − 1 �2.23�

contains the remaining short-ranged �SR� contribution. In-
deed, as may be easily verified from a Taylor expansion of
the exponential exp�−�udip� appearing in fSR in powers of
the dipolar potential, fSR decays �to leading order� as r12

−6.
Starting from the Taylor expansion, we further approximate
the short-ranged part by keeping only terms up to second
order in udip, yielding
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fSR�r12,�1,�2� � �exp�− �uLJ�r12�� − 1�

− �udip�r12,�1,�2��exp�− �uLJ�r12�� − 1�

+
�2

2
exp�− �uLJ�r12���udip�r12,�1,�2��2.

�2.24�

The above truncation has been first employed in a MMF
study of the surface tension of polar fluids �28�. Later, results
for the phase diagrams of bulk polar fluids �31� have indi-
cated that the second-order theory yields data very close to
those from the full MMF approximation �without any trun-
cation�. From a technical point of view the truncation some-
what simplifies the minimization procedure since it restricts
the density expansion coefficients �lm�z� �see Eq. �2.10�� ap-
pearing in �F to those with l�2 and �m � �2.

We now consider successively the contributions of the
three terms of fSR�r12,�1 ,�2� �see Eq. �2.24�� to the short-
ranged part of the excess free energy �see Eq. �2.20�� defined
as

�FSR = −
�2

2�
�

r12��̃T

dr1dr2� d�1d�2

� ��z1,�1���z2,�2�fSR�r12,�1,�2� . �2.25�

Inserting the first term on the right side of Eq. �2.24� into Eq.
�2.25�, and using the normalization of the orientational dis-
tribution �see Eq. �2.9��, one finds

�FSR,I = −
�2

2�
�

r12��̃T

dr1dr2�exp�− �uLJ�r12�� − 1� .

�2.26�

The spatial integrals can be simplified by introducing cylin-
drical coordinates ri= �Ri ,zi� �i=1,2�, where Ri= �Ri ,�i� is
the projection of ri onto the x-y plane �Ri=�xi

2+yi
2, �i is the

polar angle�. Furthermore, due to the translational invariance
of the system in the directions parallel to the walls, the inte-
grations over R1 and R2 can be replaced by an integration
over the in-plane separation vector R12=R1−R2= �R12,�12�,
where R12=��x1−x2�2+ �y1−y2�2 and �12=�1−�2. Thus,

�
r12��̃T

dr1dr2 ¯

→ A�
zmin

zmax

dz1�
zmin

zmax

dz2 � �
0

2

d�12�
Rmin�T�

�

dR12R12 . . . ,

�2.27�

where the lower integration limit of the radial integral is
given by

Rmin�T� = �0, �z12� � �̃T,

��̃T
2 − �z1 − z2�2, �z12� � �̃T

�2.28�

with z12=z1−z2. Combining Eqs. �2.27� and �2.26� we obtain

�FSR,I = −
�2

2�
2A�

zmin

zmax

dz1�
zmin

zmax

dz2gI�z12� , �2.29�

where we have introduced the function

gI�z12� = �
Rmin�T�

�

dR12R12�exp�− �uLJ��R12
2 + z12

2 �� − 1� .

�2.30�

The next contribution to the free energy �FSR is given by
�see Eqs. �2.24� and �2.25��

�FSR,II =
�2

2
�

r12��̃T

dr1dr2� d�1d�2��z1,�1���z2,�2�

� udip�r12,�1,�2��exp�− �uLJ�r12�� − 1� . �2.31�

In order to perform the angular integrations we rewrite the
dipole potential in rotationally invariant form

udip�r12,�1,�2� = − �
�2

r12
3 �112��1,�2,�12� , �2.32�

where �=8�2 /15, �12= �	12,�12� describes the orienta-
tion of r12, and �112 is a rotational invariant �41,43� defined
as

�l1l2L��1,�2,�12� = �
m1m2m

C�l1l2L,m1m2M�

� Yl1m1
��1�Yl2m2

��2�YLM
* ��12� .

�2.33�

In Eq. �2.33�, the quantities C�l1l2L ,m1m2M� are Clebsch-
Gordan �CG� coefficients �41� which are different from zero
only for �l1− l2 � �L� �l1+ l2� and M =m1+m2. Inserting Eqs.
�2.32� and �2.33� into Eq. �2.31�, and using the spherical
expansion of the orientational distributions given in Eq.
�2.10�, the angular integrals over �1 and �2 can be per-
formed making use of the orthogonality of the spherical har-
monics �see Eq. �2.13� below�. The remaining spatial inte-
grations in Eq. �2.31� can be simplified by introducing
cylindrical variables �see Eq. �2.27��. We note that the func-
tions Y2M

* appearing in �112 �see Eq. �2.33� with l1l2L=112�
depend explicitly on the variable �12. In particular, due to the
general relation

�
0

2

d�12YLM��12� � �
0

2

d�12exp�iM�12� = 2�M,0,

�2.34�

it is clear that only those terms in the sum in Eq. �2.33�,

which are characterized by M =0, and therefore m1=! −m2
=m, “survive” the spatial integral. We thus obtain
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�FSR,II = −
�2

2
2A��2 �

m=−1

1

C�112;mm0��
zmin

zmax

dz1�1m�z1�

��
zmin

zmax

dz2�1m�z2��
Rmin�T�

�

dR12R12

� �exp�− �uLJ�r12�� − 1�Y20��12��R12
2 + z12

2 �−3/2.

�2.35�

The remaining spherical harmonic appearing in Eq. �2.35� is
defined as Y20��12�=�5/4P2�cos 	12�, where cos 	12

=z12/r12=z12/�R12
2 +z12

2 and P2�x�= �3x2−1� /2 is a Legendre
polynomial �41�. Introducing the function

gII�z12� =
1

2
� 5

4
�

Rmin�T�

�

dR12R12

� �exp�− �uLJ��R12
2 + z12

2 �� − 1�

� � 3z12
2

R12
2 + z12

2 − 1	�R12
2 + z12

2 �−3/2, �2.36�

the free energy contribution becomes

�FSR,II = −
�2

2
2A��2�

zmin

zmax

dz1�
zmin

zmax

dz2gII�z12�

� �
m=−1

1

C�112,mm0��1m�z1��1m�z2� . �2.37�

The remaining contribution to �FSR stems from the third
term in the corresponding Mayer function �see Eq. �2.24��
and reads

�FSR,III = −
��2

4
�

r12��̃T

dr1dr2

�� d�1d�2��z1,�1���z2,�2�

� �udip�r12,�1,�2��2exp�− �uLJ�r12�� .

�2.38�

To simplify the integrand we use again Eq. �2.32� relating
udip to the invariant �112 and apply the product formula for
rotational invariants �41�. The latter implies

��112�2 = �8�−3/2�a000�000 + a220�220 + a022�022 + a202�202

+ a222�222 + a224�224� , �2.39�

where the constants a000=5, a220=�1/5, a202=a022=1, a222
=�2/35, a224=6�2/35, and the rotational invariants �l1l2l are
defined according to Eq. �2.33�. We can now treat the angular
and spatial integrals in Eq. �2.38� in the same way as before.
Employing Eq. �2.34� and introducing the functions

gIII
�l��z12� = �

Rmin�T�

�

dR12R12exp�− �uLJ�r12��

� Yl0��12��R12
2 + z12

2 �−3 �2.40�

with Yl0��12�=��2l+1� /4Pl�cos 	12�, we find

�FSR,III = −
��2

4
�8��−3/2�2A�2�2�

zmin

zmax

dz1

� �
zmin

zmax

dz2�a000gIII
�0��z12��

+ a220 �
m=−2

2

C�220,mm0��2m�z1��2m�z2�gIII
�0��z12�

+ a202C�202,000���00�20�z2� + �20�z1��00�gIII
�2��z12�

+ a222 �
m=−2

2

C�222,mm0��2m�z1��2m�z2�gIII
�2��z12��

+ a224 �
m=−2

2

C�224,mm0��2m�z1��2m�z2�gIII
�4��z12�� ,

�2.41�

where we have used that a202=a022 and C�202,000�
=C�022,000�.

Finally, the long-range part of the Mayer function �see Eq.
�2.22�� yields the free energy

�FLR =
�2

2
�

r12��̃T

dr1dr2� d�1d�2

� ��z1,�1���z2,�2�udip�r12,�1,�2� . �2.42�

The integrand has the same angle-dependence as that appear-
ing in �FSR,II �see Eq. �2.31��, and one obtains

�FLR = −
�2

2
2A��2 �

m=−1

1

C�112,mm0�

� �
zmin

zmax

dz1�1m�z1��
zmin

zmax

dz2�1m�z2�

� �
Rmin�T�

�

dR12R12Y20��12��R12
2 + z12

2 �−3/2.

�2.43�

The integral over the in-plane separation R12 can be evalu-
ated analytically, yielding
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gLR�z12� �
1

2
� 5

4
�

Rmin�T�

�

dR12R12

� � 3z12
2

R12
2 + z12

2 − 1	�R12
2 + z12

2 �−3/2

= �0, �z12� � �̃T,

� 5

16
�z12

2 − �̃T
2�/�̃T

3 , �z12� � �̃T,

�2.44�

where we have used Eq. �2.28� and the explicit formula for
Y20��12� given below Eq. �2.35�. Combining Eqs. �2.44� and
�2.43� we arrive at the expression

�FLR = −
�2

2
2A��2 �

m=−1

1

C�112,mm0�

� �
zmin

zmax

dz1�1m�z1��
zmin

zmax

dz2�1m�z2�gLR�z12� .

�2.45�

Finally, collecting all terms, the full density functional
within the present approximations reads

����
V

= kBT��ln���3� − 1� − �chem�

+ kBT
�

Lz − �̃T
�

zmin

zmax

dz� d���z,��ln 4��z,��

+ kBT�
4�T − 3��T�2

�1 − �T�2

+
1

V
��FSR,I + �FSR,II + �FSR,III + �FLR� +

FFW

V
,

�2.46�

where the excess free energy terms are defined according to

Eqs. �2.29�, �2.37�, �2.41�, and �2.45�, respectively, and

FFW

V
=

�

Lz − �̃T
�

zmin

zmax

dzuFW�z� = −
2��3

3
�FF

16Lz

�̃T
2��̃T − 2Lz�2

�2.47�

is the external contribution.

3. Euler-Lagrange equations

Within our ansatz �2.8� for the singlet density, the Euler-
Lagrange equation �2.7� decouples into two parts

��

��
= 0,

��

���z,��
= 0. �2.48�

Employing the functional �2.46�, the first member of Eq.
�2.48� yields the condition

ln � = ��chem − ln �3

−
1

Lz − �̃T
�

zmin

zmax

dz� d���z,��ln 4��z,��

−
�

��
��FHS

V
+

��F

V 	 +
2

3
�FF

16Lz�
3

�̃T
2��̃T − 2Lz�2 .

�2.49�

The minimization with respect to the orientational distribu-
tion ��z ,�� has to be performed obeying the norm condition
in Eq. �2.9�. Solving the resulting expression with respect to
the orientational parameters �lm�z� �see Eq. �2.11�� one ob-
tains

�lm�z� =
1

N�z� � d�Ylm
* ���exp�I�z,��� , �2.50�

where N�z�=�d� exp�I�z ,��� is the normalization factor and
the exponent in the distribution is given by

I�z,�� = ���2�2 �
m=−1

1

�− 1�mC�112;mm0�Y1m����
zmin

zmax

dz2�1m�z2��gII�z̃� + gLR�z̃��

+
�2�2

2
�8��−3/2�2�2�

zmin

zmax

dz2�a220 �
m=−2

2

�− 1�mC�220,mm0�Y2m����2m�z2�gIII
�0��z̃�

+ a202C�202,000��4�−1/2��20�z2� + Y20����gIII
�2��z̃� + a222 �

m=−2

2

C�222,mm0��− 1�mY2m����2m�z2�gIII
�2��z̃�

+ a224 �
m=−2

2

C�224,mm0��− 1�mY2m����2m�z2�gIII
�4��z̃�
 , �2.51�

where we have introduced the variable z̃=z−z2.
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4. Phase equilibria

One main focus of the present work is to explore the
influence of confinement on the overall phase behavior of the
polar fluid. This requires simultaneous solution of the Euler-
Lagrange equations �2.49� and �2.50� for a wide range of
temperatures and chemical potentials, which, given the z de-
pendence of the orientational order parameters, would be a
time-consuming task. In order to get a first overview we
make one further approximation, that is

�lm�z� = �lm. �2.52�

With this assumption the free energy functional �2.46� be-
comes a function of the �average� number density � and the
eight nontrivial orientational parameters �l,m characterized
by 0� l�2. Moreover, as shown in Appendix A, the integra-
tions required in the evaluation for the long-range part of the
free energy �see Eq. �2.45�� can be performed analytically,
yielding

�FLR

V
= − �2�2 42

3�Lz − �̃T�
�−

4Lz

3
+

11�̃T

6
	��10

2 − ��11�2� .

�2.53�

Equation �2.53� can be rewritten by introducing the compo-
nents of the �homogeneous� polarization P �see Eqs. �2.12�
and �2.13��, which gives

�FLR

V
= − �2�24

3

Lz

Lz − �̃T
�1 −

11�̃T

8Lz
	�1

2
�Px

2 + Py
2� − Pz

2	 .

�2.54�

Equation �2.53� reveals that, as long as Lz / �̃T�11/8�1.4,
�FLR is negative �positive� if �Px�y� � �0 ��Pz � �0�. In other
words, the long-range dipolar interactions favor polarization
parallel to the confining walls whereas perpendicular orien-
tation is unfavorable. This result is consistent with macro-
scopic electrostatics which states that, in an infinitely ex-
tended slab �homogeneous� polarization normal to the
surfaces yields surface charges, which in turn generate a de-
polarizing field �see, e.g., Ref. �37��. Perpendicular polariza-
tion is therefore energetically unfavorable and, in fact, real
systems would avoid this situation by the formation of do-
mains which is not captured by the present approach �see Eq.
�2.8��. On the other hand, the surface charges �and the depo-
larizing field� are absent if the system polarizes parallel to
the walls �37�. Interestingly, from the macroscopic perspec-
tive, these results do not depend on the wall boundary con-
ditions, that is on the dielectric constant �wall of the walls �the
present model implicitly assumes insulating walls with �wall
=1�. Indeed, one can show that even for the case of “con-
ducting” walls ��wall= � �, where additional “image” interac-
tions need to be considered �44�, the system develops in-
plane polarization.

With Eq. �2.52�, the Euler-Langrange equations �2.49�
and �2.50� can be solved numerically by employing a multi-
dimensional Newton-Raphson algorithm, yielding the equi-
librium configuration for given ��chem,T ,V�. In order to
identify coexisting states at given chemical potential �chem,
we combine Eqs. �2.49� and �2.50� with a further equation

reflecting that the pressures p=−�eq��chem,T� /V
=−���eq ,�eq���� /V of both states have to be equal as well.

5. The limit Lz\�

Within the present model of confinement, one expects the
bulk behavior to be recovered by taking the limit Lz→� of
the density functional expressions discussed so far. However,
inspection of Eq. �2.53� shows that the differences in �FLR

between parallel and perpendicular ordering persist in this
limit, which is clearly unphysical when we consider an infi-
nite �bulk� system without �or with conducting� boundaries.
This feature is again a well-known consequence of the long-
range character of the dipolar interactions and can be attrib-
uted to our cylindrical evaluation of the relevant integrals in
Eq. �2.42�. To overcome these problems we perform the cal-
culations for bulk fluids using a slightly different density
functional �31� where the ordering direction is predefined to
be along the z axis. This corresponds to the simpler density
expansion

�b�r,�� = ���cos 	� = ��
l

�l
bPl�cos 	� , �2.55�

where 	 is the angle relative to the z axis. The resulting
density functional is given in Appendix B. We note that the
long-range part of the bulk free energy �Fb,LR �see Eq. �B3��
is evaluated under the assumption that the polarization in the
z direction does not induce any depolarizing field �31� �any
other choice would be inconsistent with our ansatz �2.55��.
Therefore, Eq. �B3� is consistent with Eq. �2.54�, if we as-
sume polarization along an arbitrary direction parallel to the
walls and then take the limit Lz→�.

III. RESULTS AND DISCUSSION

The state of the Stockmayer fluid can be characterized by
the reduced �average� density �*=��3, the reduced chemical
potential �chem

* =�FF
−1��chem−3kBT ln�� /���, the reduced tem-

perature �=kBT /�FF, and the reduced dipole moment m*

=� /��FF�3, where m*2 measures the strength of dipolar in-
teractions in an antiparallel side-by-side configuration �and
contact of the spheres� relative to spherical �LJ� interactions.
Due to the additional hard core of our present Stockmayer
model �see Eq. �2.1��, it transforms directly into the DHS
fluid �uLJ=�FF=0� upon taking the limit m*→�. In this limit,
the temperature is described by the parameter T*

=kBT�3 /�2, and the reduced chemical potential �chem
*

=�3 /�2��chem−3kBT ln�� /���.
In the following we first discuss the impact of confine-

ment on the overall phase behavior which, as we will show,
strongly depends on the relative strength of the dipolar inter-
actions. In fact, calculating phase diagrams for a range of
values of m* it turns out that one can distinguish three re-
gimes of dipole moments which differ in the types of phase
behavior encountered upon decreasing the wall separation
from the bulk limit Lz→�. The corresponding phase dia-
grams will be discussed in the next three paragraphs, where
we employ both the �average� density-temperature- and the
chemical potential-temperature plane. The latter representa-
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tion is closer to typical sorption experiments of confined flu-
ids �45� where the chemical potential �rather than the average
density� of the pore fluid is fixed by allowing the pore fluid
to exchange particles with a bulk reservoir. The last part of
this section then deals with the local orientational structure
obtained by minimization of the density functional at specific
state points.

A. Phase behavior

1. Moderate dipole moments

We start by considering a Stockmayer fluid characterized
by the dipole moment m*=1.5, which is a typical value for
moderately polar molecular fluids such as chloroform �14�.
Density functional results for the corresponding bulk phase
diagram in the fluid phase regime are shown in Fig. 1. At low
and intermediate densities, and above the triple temperature
�T, the system behaves essentially van der Waals–like in that
the isotropic high-temperature fluid �IF�, characterized by
zero orientational order parameters ��l�0

b =0�, separates into
an isotropic gas �IG� and an isotropic liquid �IL� below the
vapor-liquid critical temperature �CP. The dipolar interactions
affect this transition merely as an additional attraction, as
reflected by the fact that the critical temperature is somewhat
larger than the corresponding one of the pure LJ-like fluid
��CP�m*=0��1.33 within the present approximations�. Upon
compression of the IL phase the dipolar interactions domi-
nate the phase behavior and one observes a transition into a
ferroelectric fluid �FF� phase with �l�1

b �0. At temperatures
below �CP the IL-FF transition is characterized by jumps
both in density and in the orientational order parameters. The
same is true for the IG-FF transition appearing below the
IG-IL-FF triple temperature �T. On the other hand, increasing
� towards the tricritical temperature �TCP the differences be-
tween isotropic and ferroelectric phases vanish, and for tem-
peratures above �TCP the IF-FF transition becomes continu-
ous in all order parameters, resulting in a line of
�ferroelectric� critical points �FCP��FCP

* �. These points can be
calculated from a Landau expansion of the density functional
as demonstrated in an earlier MMF study �31� on bulk Stock-
mayer fluids. The present results are, in fact, very close to

those in Ref. �31�, the remaining small differences stemming
from our truncation of the expansion of the Mayer function.
Compared to computer simulation results of Stockmayer flu-
ids �15–17�, it turns out that the MMF theory correctly pre-
dicts the phase behavior on qualitative level even though the
ferroelectric transition temperatures are seriously overesti-
mated, as one might have expected in view of the mean-field
character of the theory.

We now discuss the influence of confinement. Two exem-
plary phase diagrams are shown in Fig. 2 corresponding to
the wall separations Lz

*=Lz /�=10 and Lz
*=4, respectively. At

both degrees of confinement, the phases occurring in the dia-
grams are the same as in the bulk, a special feature of ferro-
electric phase of the confined systems being that the director
characterizing the spontaneous polarization points along an
�arbitrary� direction parallel to the confining walls. This re-
striction, which lifts the three-dimensional degeneracy of the
corresponding bulk ordering direction, can be explained by
macroscopic arguments as described in Sec. II B 4. Apart
from this feature one concludes from Fig. 2 that, for the
moderate dipole moment and the two pore widths consid-
ered, confinement does not change the topology of the phase
diagrams, but does have a profound influence on the location
of the critical, tricritical, and triple points. For a more de-
tailed comparison we have indicated the bulk CP and TCP by
crosses in the phase diagrams in Fig. 2. Considering first the
vapor-liquid critical points one observes that, upon decreas-
ing Lz

*, the critical temperature also decreases to values sig-
nificantly smaller than �CP,bulk. This is a well-known feature
of the condensation transition of confined fluids, which has
been studied in detail �theoretically and by simulation� also
for simpler systems such as confined LJ fluids �3�. As to the
critical density, the results in Fig. 2 suggest that �CP

* is essen-
tially unaffected by the degree of confinement. However,
care has to be taken in interpreting this finding since it is
well established that the average density appearing in Fig. 2
is not a suitable order parameter in a confined system. There-
fore, we switch to the chemical potential-temperature plane,
which allows a more direct comparison between bulk and
confined systems. Corresponding phase diagrams �for Lz

*

=4 ,10,�� are presented in Fig. 3, from which it is seen that
not only �CP, but also the corresponding chemical potential
decreases when the confinement becomes more and more

FIG. 1. Phase diagram of a bulk Stockmayer fluid at m*=1.5 in
the density-temperature plane. Gray regions indicate two- or three-
phase coexistence regions, and the dashed line stands for a line of
critical points. For further explanation of the lines and symbols, see
main text.

FIG. 2. Density-temperature phase diagrams of confined Stock-
mayer fluids �m*=1.5� at Lz

*=10 �solid/dashed lines� and Lz
*=4

�dotted lines�. The crosses indicate the critical and tricritical tem-
peratures of the corresponding bulk system �see Fig. 1�.
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severe. This is the so-called capillary condensation typical
for confined systems exposed to attractive fluid-wall interac-
tions. Indeed one observes from Fig. 3 that, at a fixed inter-
mediate temperature �above the IG-IL-FF triple temperature
at Lz

*=4�, the confined isotropic gas actually condenses into
the isotropic liquid at smaller chemical potentials �and, cor-
respondingly, at smaller pressures� than its bulk counterpart.
Interestingly, one finds an analogous behavior to occur with
respect to the tricritical point related to the upper �lower�
limit of the first-order �second-order� IF-FF transition �see
also Figs. 1 and 2�. Indeed, as seen from Fig. 3, the tricritical
temperatures decrease with increasing confinement, and so
do the related chemical potentials. As a consequence there is
a small range of temperatures �and chemical potentials�
where, at fixed � �or �chem

* , respectively�, the confined sys-
tems actually order already at lower chemical potentials
�higher temperatures� than the bulk fluid. This shows that
confinement can, in some cases, support the onset of ferro-
electric ordering. Opposite behavior occurs at very high tem-
peratures above the coexistence regimes, and at temperatures
below the triple points where the systems transform directly
from the IG into the FF phase �see Figs. 1 and 2�. Comparing
�at fixed �� the chemical potentials related to these strong
first-order transitions one observes a shift towards larger val-
ues indicating that the development of orientational ordering
is suppressed rather than promoted here.

2. Larger dipole moments

We now turn to a Stockmayer fluid with somewhat stron-
ger dipolar interactions characterized by the �still realistic�
reduced dipole moment m*=1.65. Figure 4 shows the corre-
sponding bulk density-temperature phase diagram, which
clearly has the same topology as the corresponding one ob-
tained at m*=1.5 �see Fig. 1�. Indeed, the main effect of the
increase of m* consists in a corresponding increase of the
vapor-liquid and ferroelectric �tri�critical temperatures. Both
effects are expected when the dipolar interactions become
more and more important as compared to the spherical at-
tractive interactions. In the present context, the interesting
aspect of the phase behavior at m*=1.65 is that there is a
stronger competition between the vapor-liquid transition, on

one hand, and the isotropic-to-ferroelectric transition, on the
other hand, as reflected by the smaller range of temperatures
where the isotropic liquid phase is stable. Thus, one may
suspect that the IL phase disappears completely when the
system is exposed to spatial confinement, which tends to
reduce the condensation critical point anyway. That such a
scenario can indeed occur can be seen from Fig. 5 where we
have plotted the �*-� diagrams at two different wall separa-
tions Lz

*=10 and Lz
*=4. It is seen that already at Lz

*=10 �see
Fig. 5�a��, which may be considered as a “mesoscopic” pore
width, the vapor-liquid critical point has nearly disappeared.
The ferroelectric phase, on the other hand, still occupies a
large portion of the parameter space. Finally, upon decreas-
ing the wall separation even further the IL phase becomes
entirely suppressed as a thermodynamically stable phase, and

FIG. 3. Phase diagrams for bulk and confined Stockmayer fluids
at m*=1.5 in the chemical potential-temperature plane. The solid
lines, crosses, and squares indicate first-order transition lines corre-
sponding to the bulk fluid Lz

*=10 and Lz
*=4. Dashed lines denote

the lines of IF-FF critical points.

FIG. 4. Phase diagram of a bulk Stockmayer fluid at m*=1.65 in
the density-temperature plane. Symbols as in Fig. 1.

FIG. 5. Density-temperature phase diagrams of confined Stock-
mayer fluids at m*=1.65 and Lz

*=10 �a�, Lz
*=4 �b�. Crosses indicate

the critical and tricritical temperatures of the corresponding bulk
system �see Fig. 4�.
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one is left with an IF-FF transition. Corresponding �chem
* -�

diagrams are plotted in Fig. 6. Apart from the disappearance
of the isotropic liquid phase, these diagrams also show that
the isotropic-to-ferroelectric transition in the confined fluids
is generally shifted to larger chemical potentials �lower tem-
peratures� compared to their bulk counterparts. One thus
concludes that at large dipole moments such as m*=1.65
confinement tends to inhibit both the condensation and the
isotropic-ferroelectric transition. However, since the impact
on the condensation transition is larger, it is the IF-FF tran-
sition which “resists” the spatial confinement even under se-
vere conditions.

3. The limit m*\�

For completeness, we finally consider the phase behavior
of a “dipole-dominated” system with vanishing LJ interac-
tions, that is, m*→� �DHS�. The corresponding bulk phase
diagram plotted in Fig. 7 reveals that the DHS fluid does not
exhibit a condensation transition �within the isotropic phase�
even in the absence of confinement. This MMF result is con-
sistent with the absence of an ordinary liquid phase in com-
puter simulations of DHS fluids �18,19�. What is neglected
within the MMF theory is the dipolar chain and network
formation observed in numerous simulation studies of dilute,
strongly coupled DHS �see Ref. �19�, and references therein�.
On the other hand, spontaneously polarized phases are pre-
dicted in qualitative agreement with the simulation results
�46�.

The impact of spatial confinement is illustrated by the set
of dotted lines in Fig. 7, which refer to a confined DHS fluid
at Lz

*=4. Figure 8 contains the corresponding phase diagrams
in the chemical potential-temperature plane. As expected
from our Stockmayer results discussed in Sec. III A 2, the
introduction of confining walls in the system does not change
the topology of the bulk phase diagram but shifts the actual
conditions under which the IF-FF transition occurs. In par-
ticular, the data plotted in Fig. 8 indicate a shift towards
larger chemical potentials and lower temperatures compared
to the bulk. This finding contradicts, to some extent, results
from an earlier study by us �12� where we used a pure MF
theory to investigate the IF-FF transition in a DHS like fluid
at a fixed temperature. In that study, we came to the conclu-
sion that the transition is actually supported by the confining
walls in that the average transition densities �at fixed T*� are
somewhat lower. We note, however, that the MF results in
Ref. �12� are based on the assumption that the dipole orien-
tations are completely restricted to directions parallel to the
walls already in the isotropic phase. This is a strongly ideal-
ized picture, as we will show explicitly in Sec. III B. Finally,
it is interesting that the chemical potentials related to the
tricritical points in the DHS fluids exhibit a shift towards
larger values with decreasing Lz, which is opposite the be-
havior found in the strongly coupled Stockmayer fluid �see
Sec. III A 2�. We understand this difference as a consequence
of the different fluid-wall interactions, which are attractive in
the Stockmayer case, but purely repulsive for the confined
DHS fluids considered here.

B. Local orientational structure

So far we have focused on the overall phase behavior, as
characterized by the homogeneous parameters �* and �l�1,m.
It is clear, however, that of all these quantities are, in general,
inhomogeneous �i.e., z dependent� due to the presence of
confining walls. A prominent effect is the formation of layers
�parallel to the walls�, which is reflected by oscillations in
the local density ��z� �see, e.g., Ref. �20��. The purpose of
this paragraph is to show that, despite the simplified �con-
stant� number density, the present theory still predicts inho-

FIG. 6. Same as Fig. 3 but for m*=1.65.

FIG. 7. Phase diagram of the bulk DHS fluid �solid lines� and a
corresponding confined system at Lz

*=4 �dotted lines� in the
density-temperature plane.

FIG. 8. Phase diagrams of bulk and confined DHS fluids in the
chemical potential-temperature plane. The solid, dot-dashed, and
dotted lines indicate the IF-FF first-order transition line correspond-
ing to the bulk fluid, Lz

*=10 and Lz
*=4. Dashed lines denote the

lines of IF-FF critical points.
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mogeneous orientational order parameters when we solve
Eqs. �2.49� and �2.50� at fixed chemical potentials and tem-
peratures corresponding to specific state points. These calcu-
lations have been performed by supplementing the Newton-
Raphson algorithm for the equilibrium density by an
iteration algorithm for the local order parameters.

We start with the polarization P�z� characterizing the
ferroelectric phase, taking the Stockmayer fluid at m*=1.5
and Lz

*=10 as an example �see Fig. 2�a� for the overall phase
diagram�. Figure 9 shows typical polarization profiles deep
in the FF phase as functions of the reduced distance from the
walls, z*=z /�. As expected, the director of the systems
points along a direction d within the x-y plane �i.e., Pz�z�
=0�, where d is close �but not exactly parallel� to the x axis,
therefore both Px�z� and Py�z� are different from zero. Due to
the hard core of the fluid-wall potential �see Eq. �2.5��, the
polarization vanishes for separations Lz /2� �z � � �Lz− �̃T� /2.
Decreasing then �z�, the polarization does not directly jump
to high values, as one might have expected in view of the
hard core �and the otherwise attractive character� of the
fluid-wall interaction. Rather, it increases smoothly from an
intermediate value directly at the hard core up to a �small�
maximum. The soft increase may be interpreted such that the
mean field favoring the ferroelectric ordering is reduced in
the vicinity of the walls, which seems plausible since the
number of neighbors of each particle is reduced here. Fur-
thermore, the small maxima in Px�z� may be understood as
fingerprints of the layer formation, which we have otherwise

suppressed by assuming a homogeneous number density. Fi-
nally, for even larger separations from the wall �i.e., in the
pore center�, one sees from Fig. 9 that Px�z� and Py�z� are
essentially constant. This feature is, in fact, not too unrealis-
tic in view of the fairly large pore width considered. We also
note that the value of Px�z� in the pore middle is very close
to that obtained via a minimization of the density functional
under the assumption of homogeneous orientational order
parameters. The latter value is indicated by the horizontal
line in Fig. 9.

A further interesting quantity is the parameter Qzz�z� de-
fined in Eq. �2.14�. Numerical results for this function �again
within the FF phase� are shown in Fig. 10. It is seen that
Qzz�z� is negative everywhere, reflecting the ordering parallel
to the walls. One also observes two minima in Qzz�z� at the
same positions z where Px�z� exhibits maxima �see Fig. 9�,
indicating that the tendency of the walls to align the particles
is strongest here.

Finally, it is interesting to see that the present theory pre-
dicts weak ordering of the dipole axis already in the globally
isotropic phase. This can be seen from Fig. 11, where we
have plotted results for Qzz�z� in the coexisting IG and IL
phases for the same system discussed before �Lz

*=10�.
Clearly, dipole orientations in the z direction are somewhat
suppressed already at these low densities, even though the
phenomenon is restricted to the “layer” closest to the walls.
A stronger local ordering occurs when the confinement be-
comes more severe, see Fig. 12 for an representative ex-

FIG. 10. Local order parameter Qzz�z� within the ferroelectric
phase of a confined Stockmayer fluid �same parameters as in
Fig. 9�.

FIG. 11. Local order parameter Qzz�z� within the isotropic gas
phase �solid line, �*=0.042� and the isotropic liquid phase �dotted
line, �*=0.44� of a confined Stockmayer fluid at m*=1.5, Lz

*=10,
and �=1.68.

FIG. 12. Local order parameter Qzz�z� within the isotropic liquid
phase ��*=0.477� of a confined Stockmayer fluid at m*=1.5, Lz

*

=10, and �=1.55.

FIG. 9. Components of the local polarization in the x direction
�solid line� and y direction �dotted� within the ferroelectric phase of
a confined Stockmayer fluid at m*=1.5 and Lz

*=10 ��=1.68, �*

=0.879�.
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ample at Lz
*=4. The data reveal “layer formation” and a re-

sulting restriction of dipole orientations throughout the pore.
These density functional results are consistent, on a qualita-
tive level, with computer simulation results for confined
Stockmayer �48� and dipolar soft sphere �12� fluids. Quanti-
tatively, the actual magnitude of Qzz�z� is underestimated as
compared to typical values observed in the simulation stud-
ies, which may be traced back to the MMF approximation of
the dipolar correlations. We note, however, that a pure MF
theory �where the pair correlations are set to unity� would
not predict any local ordering at all.

IV. CONCLUSIONS

In this work we have explored the fluid-fluid phase behav-
ior and the orientational structure of confined polar fluids
with different dipole moments by means of density func-
tional theory. Our functional involves two key approxima-
tions, that is homogeneity of the local density throughout the
pore space, and a �truncated� modified mean-field �MMF�
approximation for the intermolecular correlations. The main
findings of this work can be summarized as follows.

�1� Confined Stockmayer fluids with small to moderate
dipole moments m* exhibit a gas-liquid critical point sepa-
rating two isotropic phases, as do their bulk counterparts.
The critical temperature �CP of the confined systems is low-
ered with respect to the bulk, in accordance to the behavior
found in simpler fluids with spherical attractive interactions
�4�. On the other hand, for given pore width, �CP increases
with m* �within the range considered�, which is in accor-
dance to what is found in bulk Stockmayer fluids �14� and
indicates that the dipolar interactions induce an overall at-
traction. Moreover, in presence of adsorbing walls, the sys-
tems condense at lower chemical potentials �capillary con-
densation�. Additional calculations with repulsive walls �not
reported in Sec. III� indicated that in this case the condensa-
tion occurs at higher chemical potentials �capillary evapora-
tion� whereas the density-temperature phase diagrams remain
essentially unchanged. Finally, ferroelectric phases only oc-
cur at high densities, with the ferroelectric �tri�critical tem-
peratures being somewhat smaller than in the bulk, but less
reduced than those corresponding to the capillary condensa-
tion.

�2� An increase of the dipole moment enhances the ten-
dency of the systems to develop ferroelectric phases and can
lead to a suppression of the isotropic liquid as a globally
stable phase when the confinement becomes sufficiently se-
vere.

�3� In the limit m*→� �DHS� confinement does not
change the overall phase behavior. The ferroelectric tricriti-
cal point is shifted to lower temperatures and larger chemical
potentials, which might be due to the fact that the walls are
purely repulsive for this model.

�4� Despite the basic assumption of a constant pore den-
sity, the local polarization P�z� within the ferroelectric con-
fined fluids is inhomogeneous. In particular, the polarization
close to the substrates is strongly reduced �as opposed to the
pore center�, reflecting the reduced mean field close to the

pore walls. This reduction of local order is somewhat remi-
niscent �6� of the behavior of various real confined fluids
such as benzene in mesoporous silica �47� close to their
freezing transition where the fluid in the pore center is al-
ready solidified, whereas the contact layer is still liquid. In
the latter case, however, it is rather the nature of fluid-wall
interactions �such as hydrogen bonds� which reduces the lo-
cal crystalline order in the contact layer whereas in the
present model fluid, geometry alone is responsible for re-
duced ordering field.

�5� The present theory predicts formation of “layers” with
local orientational ordering of the dipole axes �Qzz�z��0�
already in isotropic phases. This behavior agrees qualita-
tively with computer simulations �12,13,48�.

It is clear that the present results should rather be seen as
predictions on a qualitative level than as accurate quantita-
tive estimates. In particular, the MMF approximation of the
correlations is known to overestimate the stability of ferro-
electric phases already in bulk polar fluids. We thus expect
that features such as confinement-induced suppression of the
isotropic liquid �in favor of ferroelectric phases� occur at
significantly higher dipole moments compared to the one dis-
cussed here �m*=1.65�. Also, the assumption of constant
number density is known to induce shortcomings �such as
inability to predict the correct dependence of �CP on the pore
width� even in simpler �van der Waals–like� models �4�. The
confinement-induced oscillations of the real number density
could be incorporated, at least approximately, by using more
sophisticated expressions such as Rosenfeld’s fundamental
measure theory �FMT� for the hard-sphere part of the excess
free energy �49�. Combining then the FMT functional with
the present theory for the dipolar part of the free energy one
could construct an improved functional to describe structure
and phase behavior of confined polar fluids. Another impor-
tant task is generalization of the theory to the case of one
wall and investigation of the related questions of surface-
induced order and wetting. Work in these directions is in
progress.
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APPENDIX A: LONG-RANGED PART OF �F
FOR HOMOGENEOUS ORDER PARAMETERS

Assuming that the orientational order parameters are ho-
mogeneous �see Eq. �2.52��, the expression �2.45� for �FLR

can be further simplified. Specifically, the two integrations
normal to the walls can be rewritten as
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where we have used Eqs. �2.44� and �2.16�. Inserting Eq.
�A1� into Eq. �2.45� and setting �1m�z�=�1m we obtain
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Finally, using the relations C�112,000�=2�1/6,
C�112,110�=�1/6, and �=8�2 /15, one arrives at Eq.
�2.53�.

APPENDIX B: DENSITY FUNCTIONAL
OF THE BULK SYSTEM

Using the expansion �2.55� and evaluating the bulk free
energy within the �truncated� MMF approximations de-
scribed in Sec. II B 2, the grand canonical functional be-
comes

�b���
V

= kBT��ln���3� − 1� − �chem�

+ kBT�� d���cos 	�ln 4��cos 	�

+ kBT�
4�T − 3�T

2

�1 − �T�2 +
�Fb

V
, �B1�

where the contribution of the LJ- and dipolar interactions is
given by

�Fb

V
= −

�22

�
�

�̃T

�

dr12r12
2 �exp�− �uLJ�r12�� − 1�

− �2��4165/2

15
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dr12r12
4 exp�− �uLJ�r12��

� � 5

83/2 +
2�

25
��2

b�2	 +
�Fb,LR

V
. �B2�

The last contribution in Eq. �B2� stems from the long-ranged
part of the Mayer function �see Eq. �2.22��. Evaluating this
contribution in the absence of depolarizing fields �i.e., for a
needlelike volume �31� with its long axis along the z direc-
tion�, one obtains

�Fb,LR

V
= − �2�2323

27
��1

b�2 = − �2�22

3
Pz

2. �B3�

In obtaining the second line of Eq. �B3� we have used the
relation �1

b= �3/4�Pz, with Pz being the �homogeneous� po-
larization in the z direction. The resulting expression for
�Fb,LR corresponds to the energy of a macroscopic, homo-
geneously polarized sample in the absence of depolarizing
fields.
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